EconPapers    
Economics at your fingertips  
 

REPRODUCING KERNEL HILBERT SPACES OF FRACTAL INTERPOLATION FUNCTIONS FOR CURVE FITTING PROBLEMS

Dah-Chin Luor ()
Additional contact information
Dah-Chin Luor: Department of Data Science and Analytics, I-Shou University, No. 1, Sec. 1, Syuecheng Road, Dashu District, Kaohsiung City 84001, Taiwan

FRACTALS (fractals), 2022, vol. 30, issue 03, 1-10

Abstract: In this paper, we show that the spaces of some types of fractal interpolation functions are reproducing kernel Hilbert spaces with two different types of inner products. Then we apply these results to curve fitting problems. We establish the fractal interpolation functions that are in reproducing kernel Hilbert spaces and that minimize the regularized empirical error.

Keywords: Fractal; Interpolation; Fractal Interpolation Function; Curve Fitting; Reproducing Kernel Hilbert Space; Fractal-Type Kernel (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X22500372
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:30:y:2022:i:03:n:s0218348x22500372

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0218348X22500372

Access Statistics for this article

FRACTALS (fractals) is currently edited by Tara Taylor

More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:fracta:v:30:y:2022:i:03:n:s0218348x22500372