FRACTAL ANALYSIS FOR THERMAL CONDUCTIVITY OF DUAL POROUS MEDIA EMBEDDED WITH ASYMMETRIC TREE-LIKE BIFURCATION NETWORKS
Yidan Zhang,
Boqi Xiao,
Biliang Tu,
Guoying Zhang,
Yanbin Wang and
Gongbo Long
Additional contact information
Yidan Zhang: School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
Boqi Xiao: School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China†Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China‡Hubei Provincial Engineering Technology Research, Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
Biliang Tu: School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
Guoying Zhang: School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
Yanbin Wang: School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
Gongbo Long: School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China†Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China‡Hubei Provincial Engineering Technology Research, Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
FRACTALS (fractals), 2023, vol. 31, issue 05, 1-20
Abstract:
Heat transport in tree-like bifurcation networks has been widely studied in various fields. In this work, we investigate heat conduction in the dual porous media embedded with asymmetric tree-like bifurcation networks. In addition, considering the effects of nonuniform tube shape, we assume that the bifurcated tube shows sinusoidal fluctuations. Based on the fractal distribution of pore size and bifurcation structure, we established a dimensionless effective thermal conductivity (ETC) model of the dual porous media. The dimensionless ETC (λ+) obtained is related to the porosity (ϕ), the fluid–solid thermal conductivity ratio (λf/λs), the pore area fractal dimension Df and the structural parameters of the bifurcation network (bifurcation level i, length ratio γ, radius ratio η, fluctuation amplitude factor ξ, bifurcation angle 𠜃). To verify the validity of this model, a comparison of the present dimensionless ETC model with available experimental data was carried out and the results were in good agreement. We have discussed the effects of each parameter on the dimensionless thermal conductivity in detail and constructed parametric planes to evaluate the structural parameters more directly. The model has positive implications for revealing the heat transport mechanism in asymmetric tree-like bifurcation dual porous media.
Keywords: Asymmetric; Tree-Like Bifurcation Network; Dual Porous Media; Sinusoidal Fluctuation; Fractal (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X23500469
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:31:y:2023:i:05:n:s0218348x23500469
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218348X23500469
Access Statistics for this article
FRACTALS (fractals) is currently edited by Tara Taylor
More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().