MOBILE EDGE COMPUTING ORIENTED MULTI-AGENT COOPERATIVE ROUTING ALGORITHM: A DRL-BASED APPROACH
Jianhui Lv (),
Shen Zhao (),
Bo Yi and
Qing Li ()
Additional contact information
Jianhui Lv: Peng Cheng Laboratory, Shenzhen 518057, P. R. China
Shen Zhao: ��College of Computer Science and Engineering, Northeastern University, Shenyang 110169, P. R. China
Bo Yi: ��College of Computer Science and Engineering, Northeastern University, Shenyang 110169, P. R. China
Qing Li: Peng Cheng Laboratory, Shenzhen 518057, P. R. China
FRACTALS (fractals), 2023, vol. 31, issue 06, 1-17
Abstract:
In the era of 5G/B5G, computing-intensive, delay-sensitive applications such as virtual reality inevitably bring huge amounts of data to the network. In order to meet the real-time requirements of applications, Mobile Edge Computing (MEC) pushes computing resources and data from the centralized cloud to the edge network, providing users with computing offload technology. However, the mismatch between the great computing requirements of computing-intensive tasks and the limited computing power of a single edge server poses a great challenge to computing offload technology. In this paper, a multi-agent cooperation mechanism for MEC and a routing mechanism based on deep reinforcement learning (DRL) are proposed. First of all, a multi-agent cooperation mechanism is proposed to realize the cooperative processing of computing-intensive and delay-sensitive applications, and the task unloading decision-making problem based on multi-agent cooperation is studied. Secondly, the cooperative processing of tasks by multi-agents involves data transmission. Considering the real-time requirements of tasks, this paper proposes an intelligent routing mechanism based on DRL to plan the optimal routing path. Finally, the simulation implementation and performance evaluation of the multi-agent cooperation mechanism and routing mechanism for MEC are carried out. The experimental results show that the intelligent routing mechanism based on DRL and graph neural network is superior to the comparison mechanism in terms of network average delay, throughput and maximum link bandwidth utilization. At the same time, the superiority of graph neural network in model generalization is verified on a new network topology National Science Foundation (NSF) Net. The results of route optimization are applied to the multi-agent cooperation mechanism, and the experimental results show that the mechanism is superior to the comparison scheme in terms of task success rate and average task response delay. The combination of these two mechanisms well solves the problem that it is difficult to deal with computing-intensive and delay-sensitive applications in mobile edge computing because of its limited resources.
Keywords: MEC; DRL; Cooperative Routing; Multi-Agent (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X23400996
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:31:y:2023:i:06:n:s0218348x23400996
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218348X23400996
Access Statistics for this article
FRACTALS (fractals) is currently edited by Tara Taylor
More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().