EconPapers    
Economics at your fingertips  
 

DYNAMIC HYPERLEDGER NFT ON FEDERATED LEARNING FOR PSYCHIATRIC SERVICES IN THE COVID-19 TIMES

Ricardo Carreã‘o Aguilera, Adan Acosta Banda, Miguel Patiã‘o Ortiz and Julian Patiã‘o Ortiz
Additional contact information
Ricardo Carreã‘o Aguilera: Universidad del Istmo Campus Tehuantepec, Ciudad Universitaria S/N, Barrio Santa Cruz, 4a. Sección Sto. Domingo Tehuantepec, C. P. 70760, Oaxaca, México
Adan Acosta Banda: Universidad del Istmo Campus Tehuantepec, Ciudad Universitaria S/N, Barrio Santa Cruz, 4a. Sección Sto. Domingo Tehuantepec, C. P. 70760, Oaxaca, México
Miguel Patiã‘o Ortiz: Instituto Politécnico Nacional, SEPI ESIMEZ, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Alcalía Gustavo A. Madero, C. P. 07738 Ciudad de México, México
Julian Patiã‘o Ortiz: Instituto Politécnico Nacional, SEPI ESIMEZ, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Alcalía Gustavo A. Madero, C. P. 07738 Ciudad de México, México

FRACTALS (fractals), 2023, vol. 31, issue 07, 1-14

Abstract: This paper proposes an innovative method to take advantage of Blockchain Convolutional Neural Networks (BCNNs) in Emotion Recognition (ER). Based on Artificial Intelligence, this proposal uses audio-visual emotion patterns to determine psychiatric profiles to attend to the most urgent as a priority. BCNN architectures were used to identify emergency patterns. The results indicate that the proposed method is adequate for classifying and identifying audio-visual patterns using Deep Learning (DL) with Boltzmann’s restricted machines. It is concluded that it is sufficient to consider the audio-visible critical features from the patient’s face and voice for the proposed model to recognize a psychiatric services emergency for immediate action: the emergency with no control and the Emergency under control. User personal dynamic profiles are stored in the blockchain ecosystem since they are deemed sensitive data. System security is provided by blockchain and authentication uses non-fungible tokens (NFT) technology.

Keywords: Blockchain Convolutional Neural Network (BCNN); Emotion Recognition (ER); Non-fungible Tokens (NFT) (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X23500718
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:31:y:2023:i:07:n:s0218348x23500718

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0218348X23500718

Access Statistics for this article

FRACTALS (fractals) is currently edited by Tara Taylor

More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:fracta:v:31:y:2023:i:07:n:s0218348x23500718