EconPapers    
Economics at your fingertips  
 

NEW ANALYSIS METHODS FOR THE COUPLED FRACTIONAL NONLINEAR HIROTA EQUATION

Kang-Le Wang ()
Additional contact information
Kang-Le Wang: School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, P. R. China

FRACTALS (fractals), 2023, vol. 31, issue 09, 1-14

Abstract: In this work, the coupled fractional nonlinear Hirota equation is defined by using a powerful fractional derivative sense, which is M-truncate derivative. We explore the fractional functional method and fractional simple equation method to investigate the structure of the solutions of the coupled fractional nonlinear Hirota equations, and some new periodic solutions and solitary wave solutions are successfully acquired. The two proposed approaches are simple, effective and direct. Moreover, some 3D and 2D graphs are sketched to elaborate the behavior of these solutions. These obtained solitary wave and periodic solutions are helpful to improve the understanding of the physical behavior of the corresponding mathematical model.

Keywords: M-truncate Derivative; Fractional Nonlinear Hirota Equations; Fractional Functional Method; Fractional Simple Equation Method (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X23501190
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:31:y:2023:i:09:n:s0218348x23501190

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0218348X23501190

Access Statistics for this article

FRACTALS (fractals) is currently edited by Tara Taylor

More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:fracta:v:31:y:2023:i:09:n:s0218348x23501190