DIAGNOSIS OF STUDENT CONFUSION THROUGH ARTIFICIAL INTELLIGENCE
Luciana Espã Ndola-Ulibarri,
Marã A-Elena Acevedo-Mosqueda,
Marco-Antonio Acevedo-Mosqueda,
Sandra-Luz Gã“mez-Coronel and
Ricardo Carreã‘o-Aguilera
Additional contact information
Luciana Espã Ndola-Ulibarri: Instituto Politécnico Nacional, Escuela Superior de IngenierÃa Mecánica y Eléctrica, Unidad Profesional “Adolfo López Mateos†Edificio Z, Tercer Piso, Zacatenco, GAM, CDMX 07738, Mexico
Marã A-Elena Acevedo-Mosqueda: Instituto Politécnico Nacional, Escuela Superior de IngenierÃa Mecánica y Eléctrica, Unidad Profesional “Adolfo López Mateos†Edificio Z, Tercer Piso, Zacatenco, GAM, CDMX 07738, Mexico
Marco-Antonio Acevedo-Mosqueda: Instituto Politécnico Nacional, Escuela Superior de IngenierÃa Mecánica y Eléctrica, Unidad Profesional “Adolfo López Mateos†Edificio Z, Tercer Piso, Zacatenco, GAM, CDMX 07738, Mexico
Sandra-Luz Gã“mez-Coronel: ��Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria en, IngenierÃa y TecnologÃas Avanzadas UPIITA, GAM, CDMX 07340, Mexico
Ricardo Carreã‘o-Aguilera: ��Universidad del Istmo, Campus Tehuantepec, Ciudad Universitaria S/N, Barrio Santa Cruz, 4a. Sección Sto. Domingo Tehuantepec, C.P. 70760, Oaxaca, Mexico
FRACTALS (fractals), 2024, vol. 32, issue 01, 1-10
Abstract:
Student confusion is a problem that is experienced daily in school classrooms. Teachers transfer knowledge to students without knowing if they are receiving it correctly. Being aware of whether the student correctly grasps the knowledge would be of great help since different actions could be carried out to correct this problem. The proposal of this work focuses on carrying out the diagnosis of student confusion through Machine Learning algorithms. In particular, the following algorithms were applied: Logistic Regression (LR), K-Nearest Neighbor (K-NN), Random Forest (RF) and Multi-Layer Perceptron (MLP). The metric was accuracy. The results obtained from the accuracy of each algorithm with the 5-Fold-Cross Validation validation method are 55.03% (LR), 52.98% (7-NN), 58.86% (RF) and 75.40% (MLP). An improvement in accuracy was achieved with respect to already published papers.
Keywords: Artificial Intelligence; Machine Learning; Diagnosis; Student Confusion; Electroencephalography (EEG) (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X24500105
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:32:y:2024:i:01:n:s0218348x24500105
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218348X24500105
Access Statistics for this article
FRACTALS (fractals) is currently edited by Tara Taylor
More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().