APPLICATION OF VARIATIONAL PRINCIPLE AND FRACTAL COMPLEX TRANSFORMATION TO (3+1)-DIMENSIONAL FRACTAL POTENTIAL-YTSF EQUATION
Junfeng Lu ()
Additional contact information
Junfeng Lu: Department of Statistics, Zhejiang Gongshang University Hangzhou College of Commerce, Hangzhou 310018, P. R. China
FRACTALS (fractals), 2024, vol. 32, issue 01, 1-12
Abstract:
This paper focuses on the numerical investigation of the fractal modification of the (3+1)-dimensional potential-Yu–Toda–Sasa–Fukuyama (YTSF) equation. A variational approach based on the two-scale fractal complex transformation and the variational principle is presented for solving this fractal equation. The fractal potential-YTSF equation can be transformed as the original potential-YTSF equation by means of the fractal complex transformation. Some fractal soliton-type solutions and fractal periodic wave solutions are provided by using the variational principle proposed by He, which are not touched in the existing literature. Some remarks about the variational formulation and the wave solutions for the original potential-YTSF equation by Manafian et al. [East Asian J. Appl. Math. 10(3) (2020) 549–565] are also given. Numerical results of the fractal wave solutions with different fractal dimensions and amplitudes are presented to show the propagation behavior.
Keywords: Variational Principle; Fractal Complex Transformation; Potential-YTSF Equation; Soliton (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X24500270
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:32:y:2024:i:01:n:s0218348x24500270
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218348X24500270
Access Statistics for this article
FRACTALS (fractals) is currently edited by Tara Taylor
More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().