EconPapers    
Economics at your fingertips  
 

CONSTRUCTION OF MONOTONOUS APPROXIMATION BY FRACTAL INTERPOLATION FUNCTIONS AND FRACTAL DIMENSIONS

Binyan Yu and Yongshun Liang ()
Additional contact information
Binyan Yu: School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
Yongshun Liang: School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, P. R. China

FRACTALS (fractals), 2024, vol. 32, issue 02, 1-15

Abstract: In this paper, we research on the dimension preserving monotonous approximation by using fractal interpolation techniques. A constructive result of the approximating sequence of self-affine continuous functions has been given, which can converge to the object continuous function of bounded variation on [0, 1] monotonously and unanimously, meanwhile their graphs can be any value of the Hausdorff and the Box dimension between one and two. Further, such approximation for continuous functions of unbounded variation or even general continuous functions with non-integer fractal dimension has also been discussed elementarily.

Keywords: Monotonous Approximation; Fractal Interpolation Functions; The Hausdorff Dimension; The Box Dimension; Self-Affine Functions; Variation (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X24400061
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:32:y:2024:i:02:n:s0218348x24400061

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0218348X24400061

Access Statistics for this article

FRACTALS (fractals) is currently edited by Tara Taylor

More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:fracta:v:32:y:2024:i:02:n:s0218348x24400061