RESEARCH ON FRACTAL HEAT FLOW CHARACTERIZATION OF FINGER SEAL CONSIDERING THE HEAT TRANSFER EFFECT OF CONTACT GAPS ON ROUGH SURFACES
Junjie Lei and
Meihong Liu ()
Additional contact information
Junjie Lei: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
Meihong Liu: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
FRACTALS (fractals), 2024, vol. 32, issue 02, 1-40
Abstract:
Finger seal is a new flexible dynamic sealing technology, and its heat transfer characteristics and seepage characteristics are one of the main research hotspots. In this paper, based on the fractal theory, a fractal model of the total thermal conductance of the finger seal considering the heat transfer effect of the contact gap of the rough surface is established, a fractal model of the effective gas permeability of the adjacent finger seals annulus considering the gas slip effect and the temperature change is established, and a finite element calculation method of the two-way thermo-mechanical coupling for the finger seal is proposed. The results show that the solid-phase thermal conductance decreases with the increase of the scale coefficient. When the axial pressure difference is greater than 0.4MPa, the rotor speed is greater than 11,000r/min, the radial displacement excitation is [0.03mm, 0.09mm], and the temperature is less than 600K, the gas-phase thermal conductance between the finger seal and the rotor shows an increasing trend. The gas-phase thermal conductance of the finger seal and the rotor is always the main position under different working conditions. Under different fractal dimensions, the solid-phase thermal conductance gradually occupies the dominant position. Temperature has a certain effect on the effective gas permeability, and fractal dimension, scale coefficient, and axial pressure difference have less effect on the effective gas permeability. At an axial pressure difference of 0.08MPa, the numerical calculation results of the two-way thermo-mechanical coupling calculation method for finger seal are closer to the experimental results, with a maximum error rate of 1.96%. The above results further improve the theoretical research system of the heat transfer characteristics of the finger seal.
Keywords: Finger Seal; Fractal Theory; Gap Heat Transfer; Seepage Effect; Two-Way Thermo-mechanical Coupling (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X24500385
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:32:y:2024:i:02:n:s0218348x24500385
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218348X24500385
Access Statistics for this article
FRACTALS (fractals) is currently edited by Tara Taylor
More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().