EconPapers    
Economics at your fingertips  
 

APPLICATION OF FRACTIONAL-ORDER INTEGRAL TRANSFORMS IN THE DIAGNOSIS OF ELECTRICAL SYSTEM CONDITIONS

H. M. Cortã‰s Campos, J. F. Gã“mez-Aguilar, C. J. ZÚÑIGA-AGUILAR, L. F. Avalos-Ruiz and J. E. Lavã N-Delgado
Additional contact information
H. M. Cortã‰s Campos: Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, C. P. 62490, Cuernavaca, MR, Mexico
J. F. Gã“mez-Aguilar: ��Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, C. P. 62490, Cuernavaca, MR, Mexico
C. J. ZÚÑIGA-AGUILAR: ��Panzura Data Services, Blvr. Puerta de Hierro 5153, Puerta de Hierro, 45116 Zapopan, JA, Mexico
L. F. Avalos-Ruiz: Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, C. P. 62490, Cuernavaca, MR, Mexico
J. E. Lavã N-Delgado: �Dirección de Ingeniería en Redes y Telecomunicaciones, Universidad Politécnica del Estado de Guerrero (UPEG), Puente Campuzano, Carretera Federal Iguala-Taxco K. M. 105, Taxco de Alarcón, C. P. 40321, GE, Mexico

FRACTALS (fractals), 2024, vol. 32, issue 03, 1-30

Abstract: This paper proposes a methodology for the diagnosis of electrical system conditions using fractional-order integral transforms for feature extraction. This work proposes three feature extraction algorithms using the Fractional Fourier Transform (FRFT), the Fourier Transform combined with the Mittag-Leffler function, and the Wavelet Transform (WT). Each algorithm extracts data from an electrical system to obtain a set of features that are classified by an Artificial Neural Network to determine the system’s condition. The algorithms are utilized in diagnosing two types of electrical machine faults, one in a photovoltaic system, and another in classifying the power quality disturbances (PQDs). An optimization algorithm is suggested to find the optimal orders of integral transforms. The obtained results demonstrate the system’s effective diagnosis, displaying superior performance in classifying the faults and PQDs with complex signals.

Keywords: Fault Diagnosis Transformer; Power Quality Disturbances; Fault Diagnosis PV System; Fault Diagnosis Induction Motor; Fractional Fourier Transform; Neural Networks; Wavelet Transform (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X24500592
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:32:y:2024:i:03:n:s0218348x24500592

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0218348X24500592

Access Statistics for this article

FRACTALS (fractals) is currently edited by Tara Taylor

More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:fracta:v:32:y:2024:i:03:n:s0218348x24500592