EconPapers    
Economics at your fingertips  
 

FAULT CLASSIFICATION EXPERT SYSTEM FOR WIND TURBINE BLADE IMAGE DATABASES USING CONVOLUTIONAL NEURAL NETWORKS

Ricardo Carreã‘o Aguilera, Daniel Pacheco Bautista, Miguel Patiã‘o Ortiz, Jos㉠Rafael Dorrego Pã“rtela, Victor Ivã N Moreno Oliva and Juliã N Patiã‘o Ortiz
Additional contact information
Ricardo Carreã‘o Aguilera: Universidad del Istmo – Campus Tehuantepec, Ciudad Universitaria S/N, Barrio Santa Cruz 4a. Sección Sto. Domingo Tehuantepec, C. P. 70760, Oaxaca, México
Daniel Pacheco Bautista: Universidad del Istmo – Campus Tehuantepec, Ciudad Universitaria S/N, Barrio Santa Cruz 4a. Sección Sto. Domingo Tehuantepec, C. P. 70760, Oaxaca, México
Miguel Patiã‘o Ortiz: ��Instituto Politécnico Nacional - SEPI ESIME Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, C. P. 07738, Ciudad de México, México
Jos㉠Rafael Dorrego Pã“rtela: Universidad del Istmo – Campus Tehuantepec, Ciudad Universitaria S/N, Barrio Santa Cruz 4a. Sección Sto. Domingo Tehuantepec, C. P. 70760, Oaxaca, México
Victor Ivã N Moreno Oliva: Universidad del Istmo – Campus Tehuantepec, Ciudad Universitaria S/N, Barrio Santa Cruz 4a. Sección Sto. Domingo Tehuantepec, C. P. 70760, Oaxaca, México
Juliã N Patiã‘o Ortiz: ��Instituto Politécnico Nacional - SEPI ESIME Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, C. P. 07738, Ciudad de México, México

FRACTALS (fractals), 2025, vol. 33, issue 01, 1-9

Abstract: Detection and maintenance of wind turbine blades are essential, as they are constantly exposed to a hostile environment and are easily damaged. Defective repairs, lightning damage, and damaged dust guards are the most common faults found in our database. These faults decrease the performance of the wind generator. Although visual site inspections are common, they are inefficient due to long downtime periods. This document proposes a systematically designed expert system for the classification of visual faults from a database of typical faults in a wind farm in the Isthmus of Tehuantepec region, México. Convolutional neural networks are used for this purpose.

Keywords: Faster_rcnn_resnet101_coco; Deep Learning; Visual Faults of Wind Turbine Blades; Expert System (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X2450141X
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:33:y:2025:i:01:n:s0218348x2450141x

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0218348X2450141X

Access Statistics for this article

FRACTALS (fractals) is currently edited by Tara Taylor

More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:fracta:v:33:y:2025:i:01:n:s0218348x2450141x