NEW FRACTIONAL INTEGRAL INEQUALITIES FOR EXPONENTIALLY (h,m)-PREINVEX INTERVAL-VALUED FUNCTIONS
Yun Tan (),
Dafang Zhao,
Juan Eduardo Nã Poles Valdã‰s () and
Xiaoling Wang ()
Additional contact information
Yun Tan: Huangshi Key Laboratory of Metaverse and Virtual Simulation, School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, P. R. China
Dafang Zhao: Huangshi Key Laboratory of Metaverse and Virtual Simulation, School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, P. R. China
Juan Eduardo Nã Poles Valdã‰s: ��Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5450, Corrientes 3400, Argentina
Xiaoling Wang: Huangshi Key Laboratory of Metaverse and Virtual Simulation, School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, P. R. China
FRACTALS (fractals), 2025, vol. 33, issue 03, 1-19
Abstract:
We introduce the concept of exponentially (h,m)-preinvex interval-valued functions (EP-(h,m)-IVFs) by using the pseudo-order relation, and derive some interesting properties. Based on such a definition, we present some new Hermite–Hadamard and Hermite–Hadamard–Fejér-type inequalities for ϕk-Riemann–Liouville fractional integrals. These inequalities not only generalize some existing research findings in the literature, but also provide a new direction for the further study of interval integral estimation. Additionally, graphical representations and numerical estimates of some examples are given to illustrate the validity of the main results.
Keywords: Hermite–Hadamard Inequality; Hermite–Hadamard–Fejér Inequality; Exponentially (h; m)-Preinvex Function; Interval-Valued Function; Generalized Fractional Integral (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X2450138X
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:33:y:2025:i:03:n:s0218348x2450138x
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218348X2450138X
Access Statistics for this article
FRACTALS (fractals) is currently edited by Tara Taylor
More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().