EconPapers    
Economics at your fingertips  
 

WEBER POLYHEDRON AND WEIGHTED SHAPLEY VALUES

Valery Vasil'ev ()

International Game Theory Review (IGTR), 2007, vol. 09, issue 01, 139-150

Abstract: In this paper, we consider the relationship between the Weber set and the Shapley set being the set of all weighted Shapley values of a TU-game. In particular, we propose a new proof for the fact that the Weber set always includes the Shapley set. It is shown that the inclusion mentioned follows directly from the representation theorem for the Weber set, established by Vasil'ev and van der Laan (2002),Siberian Adv. Math., V.12, N2, 97–125. Since the representation theorem applied is formulated in terms of the dividend sharing systems belonging to the so-called Weber polyhedron, we pay strong attention to some monotonicity properties of this polyhedron. Specifically, by making use of induction techniques, a new proof of the strong monotonicity of the Weberd-systems is obtained, and a simplified description of the Weber polyhedron is given.

Keywords: Harsanyi set; Weber polyhedron; Weber set; weighted Shapley values; JEL-Code: C71 (search for similar items in EconPapers)
JEL-codes: B4 C0 C6 C7 D5 D7 M2 (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219198907001321
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:igtrxx:v:09:y:2007:i:01:n:s0219198907001321

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0219198907001321

Access Statistics for this article

International Game Theory Review (IGTR) is currently edited by David W K Yeung

More articles in International Game Theory Review (IGTR) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:igtrxx:v:09:y:2007:i:01:n:s0219198907001321