CONTAGION AND THE SPEED OF ADJUSTMENT IN SMALL WORLDS
Edward Cartwright
International Game Theory Review (IGTR), 2007, vol. 09, issue 04, 689-704
Abstract:
We model a simple dynamic process in which myopic agents are matched amongst each other to play a coordination game. The network of player interaction is varied between a regular lattice and a random network allowing us to model contagion in small world networks. Weighting times for an equilibrium shift from the risk dominated to risk dominant equilibrium are shown to be smallest in small world networks.
Keywords: Best reply; contagion; small worlds; JEL Classification: C62; JEL Classification: C72; JEL Classification: C73 (search for similar items in EconPapers)
JEL-codes: B4 C0 C6 C7 D5 D7 M2 (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219198907001667
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:igtrxx:v:09:y:2007:i:04:n:s0219198907001667
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219198907001667
Access Statistics for this article
International Game Theory Review (IGTR) is currently edited by David W K Yeung
More articles in International Game Theory Review (IGTR) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().