SEQUENTIAL CHOICE AND NON-BAYESIAN OBSERVATIONAL LEARNING
Thomas Wiseman
International Game Theory Review (IGTR), 2009, vol. 11, issue 03, 285-300
Abstract:
Standard models of observational learning in settings of sequential choice have two key features. The first is that players make decisions by using Bayes' rule to update their beliefs about payoffs from a common prior. The second is that each agent's decision rule is common knowledge, so that subsequent players can draw inferences about unobserved private signals from observable actions. In this paper, I relax the first assumption while maintaining the second. In particular, I look at observational learning by players who choose between two actions using nonparametric methods for estimating payoffs. When players are identical and make inferences using the maximum score method, an informational cascade and herd must result. If players of different payoff types use kernel or nearest-neighbor methods, there are cases in which a cascade need not arise. If one does occur, it must be one in which all players, regardless of type, choose the same action. In some situations, these alternative learning rules perform better than Bayesian updating.
Keywords: Observational learning; sequential choice; bounded rationality (search for similar items in EconPapers)
JEL-codes: B4 C0 C6 C7 D5 D7 M2 (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219198909002327
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:igtrxx:v:11:y:2009:i:03:n:s0219198909002327
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219198909002327
Access Statistics for this article
International Game Theory Review (IGTR) is currently edited by David W K Yeung
More articles in International Game Theory Review (IGTR) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().