A NEW SEQUENCE FORM APPROACH FOR THE ENUMERATION AND REFINEMENT OF ALL EXTREME NASH EQUILIBRIA FOR EXTENSIVE FORM GAMES
Charles Audet (),
Slim Belhaiza () and
Pierre Hansen ()
Additional contact information
Charles Audet: GERAD and Département de mathématiques et de génie industriel, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal (Québec) Canada H3C 3A7, Canada
Slim Belhaiza: Département de mathmatiques et génie industriel, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal (Québec) Canada H3C 3A7, Canada
Pierre Hansen: GERAD and Méthodes quantitatives de gestion, HEC Montréal, 3000, Chemin de la Côte-Sainte-Catherine, Montréal (Québec) Canada H3T 2A7, Canada
International Game Theory Review (IGTR), 2009, vol. 11, issue 04, 437-451
Abstract:
This paper presents two new results on the enumeration of all extreme equilibria of the sequence form of a two person extensive game. The sequence form of an extensive game is expressed, for the first time to our knowledge, as a parametric linear 0 - 1 program. ConsideringExt(P)as the set of all of the sequence form extreme Nash equilibria andExt(Q)as the set of all the parametric linear 0 - 1 program extreme points, we show thatExt(P) ⊆ Ext(Q). Using exact arithmetics classes, the algorithm EχMIP Belhaiza (2002); Audetet al.(2006) is extended to enumerate all elements ofExt(Q). A small procedure is then applied in order to obtain all elements ofExt(P).
Keywords: Sequence form; extensive game; Nash equilibrium; extreme equilibrium; enumeration; EχMIP algorithm (search for similar items in EconPapers)
JEL-codes: B4 C0 C6 C7 D5 D7 M2 (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S021919890900242X
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:igtrxx:v:11:y:2009:i:04:n:s021919890900242x
Ordering information: This journal article can be ordered from
DOI: 10.1142/S021919890900242X
Access Statistics for this article
International Game Theory Review (IGTR) is currently edited by David W K Yeung
More articles in International Game Theory Review (IGTR) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().