Characterizations of Three Linear Values for TU Games by Associated Consistency: Simple Proofs Using the Jordan Normal Form
Sylvain Béal,
Eric Rémila and
Philippe Solal
Additional contact information
Sylvain Béal: Université de Franche-Comté, CRESE EA3190, Universite Bourgogne Franche-Comté, F-25000 Besançon, France
Eric Rémila: ��Universite Lyon, UJM Saint-Etienne, CNRS, GATE L-SE UMR 5824, F-42023 Saint-Etienne, France‡IXXI, 46, allée d’Italie, 69007 Lyon, France
Authors registered in the RePEc Author Service: Eric Rémila and
Sylvain Béal
International Game Theory Review (IGTR), 2016, vol. 18, issue 01, 1-21
Abstract:
This paper studies values for cooperative games with transferable utility. Numerous such values can be characterized by axioms of Ψε-associated consistency, which require that a value is invariant under some parametrized linear transformation Ψε on the vector space of cooperative games with transferable utility. Xu et al. [(2008) Linear Algebr. Appl. 428, 1571–1586; (2009) Linear Algebr. Appl. 430, 2896–2897] Xu et al. [(2013) Linear Algebr. Appl. 439, 2205–2215], Hamiache [(2010) Int. Game Theor. Rev. 12, 175–187] and more recently Xu et al. [(2015) Linear Algebr. Appl. 471, 224–240] follow this approach by using a matrix analysis. The main drawback of these articles is the heaviness of the proofs to show that the matrix expression of the linear transformations is diagonalizable. By contrast, we provide quick proofs by relying on the Jordan normal form of the previous matrix.
Keywords: Associated consistency; Jordan normal form; Shapley value; center of imputation set; equal allocation of nonseparable costs (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219198916500031
Access to full text is restricted to subscribers
Related works:
Working Paper: Characterizations of three linear values for TU games by associated consistency: simple proofs using the Jordan normal form (2016)
Working Paper: Characterizations of three linear values for TU games by associated consistency: simple proofs using the Jordan normal form (2015) 
Working Paper: Characterizations of three linear values for TU games by associated consistency: simple proofs using the Jordan normal form (2015)
Working Paper: Characterizations of three linear values for TU games by associated consistency: simple proofs using the Jordan normal form (2015)
Working Paper: Characterizations of three linear values for TU games by associated consistency: simple proofs using the Jordan normal form (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:igtrxx:v:18:y:2016:i:01:n:s0219198916500031
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219198916500031
Access Statistics for this article
International Game Theory Review (IGTR) is currently edited by David W K Yeung
More articles in International Game Theory Review (IGTR) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().