A Note on Linear Complementarity via Two-Person Zero-Sum Games
Dipti Dubey (),
S. K. Neogy () and
T. E. S. Raghavan
Additional contact information
Dipti Dubey: Department of Mathematics, Shiv Nadar University, Dadri, UP 201314, India
S. K. Neogy: Indian Statistical Institute, 7, S. J. S. Sansanwal Marg, New Delhi 110016, India
T. E. S. Raghavan: Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 851 S. Morgan, Chicago, IL 60607, USA
International Game Theory Review (IGTR), 2023, vol. 25, issue 01, 1-8
Abstract:
The matrix M of a linear complementarity problem can be viewed as a payoff matrix of a two-person zero-sum game. Lemke’s algorithm can be successfully applied to reach a complementary solution or infeasibility when the game satisfies the following conditions: (i) Value of M is equal to zero. (ii) For all principal minors of MT (transpose of M) value is non-negative. (iii) For any optimal mixed strategy y of the maximizer either yi > 0 or (My)i > 0 for each coordinate i.
Keywords: Linear complementarity problem; two-person zero-sum game; Lemke’s algorithm (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219198922500190
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:igtrxx:v:25:y:2023:i:01:n:s0219198922500190
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219198922500190
Access Statistics for this article
International Game Theory Review (IGTR) is currently edited by David W K Yeung
More articles in International Game Theory Review (IGTR) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().