EconPapers    
Economics at your fingertips  
 

Reactive search-MST optimized clustering-based feature selection

A. Kaleemullah and A. Suresh ()
Additional contact information
A. Kaleemullah: Department of Computer Science, Mazharul Uloom College, Ambur, Tamilnadu, India
A. Suresh: ��Department of Computer Science, Sona College of Arts and Science, Salem, Tamilnadu, India

International Journal of Financial Engineering (IJFE), 2022, vol. 09, issue 03, 1-11

Abstract: Data clustering is a technique for analyzing the data that is incurred in various fields such as data processing, pattern recognition, knowledge discovery and machine learning. Feature clustering is an important paradigm for different types of feature selection techniques that aims to reduce redundant and irrelevant features from a given set of features in order to maintain load balance on the classification algorithm. The work proposed a PSO–GSO–MST, a hybrid approach that combines Particle Swarm Optimization (PSO) and Glowworm Swarm Optimization (GSO). The work performs efficient feature selection with improved classification accuracy. Clustering analysis plays an important role in knowledge discovery and data mining. It adopts the unsupervised learning method, and the results of clustering are similar within the class and are different between the classes. Aiming at some shortcomings of traditional clustering algorithms, some techniques for clustering using natural heuristic algorithms have emerged. The proposed work performs cluster using optimized Minimum Spanning Tree (MST). The work aims to perform optimization of MST with the help of two renowned techniques such as PSO and GSO. The proposed PSO–GSO–MST is compared with state-of-the-art algorithms such as Clustering-based Feature Selection (CFS) and PSO–MST. The results show that the classification accuracy for the proposed PSO–GSO–MST performs better by 16.9% than CFS and by 4.7% than PSO–MST optimized CFS, respectively. The outcome of the work proves that the proposed algorithm achieves improved performance than the currently available algorithms and can be used for clustering applications.

Keywords: Cluster analysis; MST; particle swarm optimization (PSO); glowworm swarm optimization (GSO) (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S2424786322500098
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijfexx:v:09:y:2022:i:03:n:s2424786322500098

Ordering information: This journal article can be ordered from

DOI: 10.1142/S2424786322500098

Access Statistics for this article

International Journal of Financial Engineering (IJFE) is currently edited by George Yuan

More articles in International Journal of Financial Engineering (IJFE) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:ijfexx:v:09:y:2022:i:03:n:s2424786322500098