DRIVER MODERATOR METHOD FOR RETAIL SALES PREDICTION
Özden Gür Ali ()
Additional contact information
Özden Gür Ali: Business Administration, Koc University, Rumeli Feneri Yolu, Sariyer 34450, Istanbul, Turkey
International Journal of Information Technology & Decision Making (IJITDM), 2013, vol. 12, issue 06, 1261-1286
Abstract:
We introduce a new method for stock keeping unit (SKU)-store level sales prediction in the presence of promotions to support order quantity and promotion planning decisions for retail managers. The method leverages the marketing literature to generate features, and data mining techniques to train a model that provides accurate sales predictions for existing and new SKUs, as well as consistent, actionable insights into category, store and promotion dynamics. The proposed "Driver Moderator" method uses basic SKU-store information and historical sales and promotion data to generate many features. It simultaneously selects few relevant features and estimates their parameters by using an L1-norm regularized epsilon insensitive regression that is formulated to pool information across SKUs and stores. Evaluations on two grocery store databases from Turkey and the USA show that out-of-sample predictions for existing and new SKUs are as good as, or more accurate than benchmark methods. Using the method's predictions for inventory decisions doubles the inventory turn ratio versus using individual regressions by lowering lost sales and inventory levels at the same time.
Keywords: Retailing; promotions; forecasting; data mining; insights; operations (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219622013500363
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijitdm:v:12:y:2013:i:06:n:s0219622013500363
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219622013500363
Access Statistics for this article
International Journal of Information Technology & Decision Making (IJITDM) is currently edited by Yong Shi
More articles in International Journal of Information Technology & Decision Making (IJITDM) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().