Optimized Deep Learning-Enabled Hybrid Logistic Piece-Wise Chaotic Map for Secured Medical Data Storage System
Anusha Ampavathi,
G. Pradeepini and
T. Vijaya Saradhi ()
Additional contact information
Anusha Ampavathi: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Green Fields Vaddeswaram, AP, India
G. Pradeepini: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Green Fields Vaddeswaram, AP, India
T. Vijaya Saradhi: Department of Computer Science and Engineering, Sreenidhi Institute of Science and Technology - SNIST, Hyderabad, India
International Journal of Information Technology & Decision Making (IJITDM), 2023, vol. 22, issue 05, 1743-1775
Abstract:
Background: In recent times, medical technology has generated massive reports such as scanned medical images and electronic patient accounts. These reports are necessary to be stored in the highly secured platform for further reference. Traditional storage systems are infeasible for storing massive data. In addition, it suffers to provide secure storage and privacy protection at the time of medical services. It is necessary to provide secure storage and full utilization of personal medical records for the common people in practice. The healthcare system based on IoT enhances the support for the patients and doctors in diagnosing the sufferers at an accurate time using the monitored health data. Yet, doctors make an inappropriate decision regarding the sufferer’s sickness when the information regarding health data saved in the cloud gets lost or hacked owing to an external attack or also power failure. Hence, it is highly essential for verifying the truthfulness of the sufferer’s information regarding health data saved on the cloud.Hypothesis: The major intention of this task is to adopt a new chaotic-based healthcare medical data storage system for storing medical data (medical images) with high protection. Methodology: Initially, the input medical images are gathered from the benchmark datasets concerning different modalities. The collected medical images are enciphered by developing Hybrid Chaotic Map by adapting the 2D-Logistic Chaotic Map (2DLCM), and Piece-Wise Linear Chaotic Map (PWLCM) referred to as Hybrid Logistic Piece-Wise Chaotic Map (HLPWCM). An Optimized Recurrent Neural Network (O-RNN) is proposed for key generation using Best Fitness-based Coefficient vector improved Spotted Hyena Optimizer (BF-CSHO). The O-RNN-based key generation utilizes the extracted image features like first and second-order statistical features and the targets are acquired as a unique encrypted key, which is used for securing the medical data. The same BF-CSHO is used for improving the training algorithm (weight optimization) of RNN to minimize the Mean Absolute Error (MAE) between the cipher (encrypted) images and original images. Results: From the result analysis, the suggested BF-CSHO-RNN-HLPWCM, by considering the image size at 554×554 shows 10.4%, 8.5%, 3.97%, 0.62%, 3.88%, 2.40%, and 7.82% provides better computational efficiency than LCM, PWLCM, LPWCM, PSO-RNN-HLPWCM, JA-RNN-HLPWCM, GWO-RNN-HLPWCM, and SHO-RNN-HLPWCM, respectively. Conclusion: Thus, the simulation findings show the effective efficiency of the offered method owing to the security of the stored medical data.
Keywords: Secured medical data storage system; optimized recurrent neural network; hybrid logistic piece-wise chaotic map; weight optimization; best fitness-based coefficient vector improved spotted hyena optimizer (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219622022500869
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijitdm:v:22:y:2023:i:05:n:s0219622022500869
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219622022500869
Access Statistics for this article
International Journal of Information Technology & Decision Making (IJITDM) is currently edited by Yong Shi
More articles in International Journal of Information Technology & Decision Making (IJITDM) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().