KAC SegNet: A Novel Kernel-Based Active Contour Method for Lung Nodule Segmentation and Classification Using Dense AlexNet Framework
Shubham Dodia,
B. Annappa and
Padukudru A. Mahesh
Additional contact information
Shubham Dodia: Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India
B. Annappa: Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India
Padukudru A. Mahesh: Department of Pulmonology, JSS Hospital, Mysore, Karnataka, India
International Journal of Information Technology & Decision Making (IJITDM), 2024, vol. 23, issue 06, 2141-2165
Abstract:
Lung cancer is known to be one of the leading causes of death worldwide. There is a chance of increasing the survival rate of the patients if detected at an early stage. Computed Tomography (CT) scans are prominently used to detect and classify lung cancer nodules/tumors in the thoracic region. There is a need to develop an efficient and reliable computer-aided diagnosis model to detect lung cancer nodules accurately from CT scans. This work proposes a novel kernel-based active-contour (KAC) SegNet deep learning model to perform lung cancer nodule detection from CT scans. The active contour uses a snake method to detect internal and external boundaries of the curves, which is used to extract the Region Of Interest (ROI) from the CT scan. From the extracted ROI, the nodules are further classified into benign and malignant using a Dense AlexNet deep learning model. The key contributions of this work are the fusion of an edge detection method with a deep learning segmentation method which provides enhanced lung nodule segmentation performance, and an ensemble of state-of-the-art deep learning classifiers, which encashes the advantages of both DenseNet and AlexNet to learn better discriminative information from the detected lung nodules. The experimental outcome shows that the proposed segmentation approach achieves a Dice Score Coefficient of 97.8% and an Intersection-over-Union of 92.96%. The classification performance resulted in an accuracy of 95.65%, a False Positive Rate, and False Negative Rate values of 0.0572 and 0.0289. The proposed model is robust compared to the existing state-of-the-art methods.
Keywords: Dense AlexNet; kernel-based active-contour method; lung cancer; nodule detection; SegNet (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219622023500700
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijitdm:v:23:y:2024:i:06:n:s0219622023500700
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219622023500700
Access Statistics for this article
International Journal of Information Technology & Decision Making (IJITDM) is currently edited by Yong Shi
More articles in International Journal of Information Technology & Decision Making (IJITDM) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().