EconPapers    
Economics at your fingertips  
 

PUT OPTION PRICES AS JOINT DISTRIBUTION FUNCTIONS IN STRIKE AND MATURITY: THE BLACK–SCHOLES CASE

D. Madan (), B. Roynette () and M. Yor ()
Additional contact information
D. Madan: Robert H. Smith School of Business, Van Munching Hall, University of Maryland, College Park, MD. 20742, USA
B. Roynette: Institut Elie Cartan, Université Henri Poincaré, B.P. 239, 54506 Vandoeuvre les Nancy Cedex, France
M. Yor: Laboratoire de Probabilités et Modèles Aléatoires, Université Paris VI et VII, 4 place Jussieu – Case 188, F – 75252 Paris Cedex 05, France;

International Journal of Theoretical and Applied Finance (IJTAF), 2009, vol. 12, issue 08, 1075-1090

Abstract: For a large class of ℝ+ valued, continuous local martingales (Mtt ≥ 0), with M0 = 1 and M∞ = 0, the put quantity: ΠM (K,t) = E ((K - Mt)+) turns out to be the distribution function in both variables K and t, for K ≤ 1 and t ≥ 0, of a probability γM on [0,1] × [0, ∞[. In this paper, the first in a series of three, we discuss in detail the case where $M_{t} = \mathcal{E}_{t}:= \exp (B_{t} - \frac{t}{2})$, for (Bt, t ≥ 0) a standard Brownian motion.

Keywords: First and last passage times; pseudo-inverse; local time-space calculus; Black–Scholes set up (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219024909005580
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijtafx:v:12:y:2009:i:08:n:s0219024909005580

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0219024909005580

Access Statistics for this article

International Journal of Theoretical and Applied Finance (IJTAF) is currently edited by L P Hughston

More articles in International Journal of Theoretical and Applied Finance (IJTAF) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:ijtafx:v:12:y:2009:i:08:n:s0219024909005580