A NOTE ON REAL-WORLD AND RISK-NEUTRAL DYNAMICS FOR HEATH–JARROW–MORTON FRAMEWORKS
David Criens ()
Additional contact information
David Criens: Department of Mathematics, Technical University of Munich, Munich 80333, Germany
International Journal of Theoretical and Applied Finance (IJTAF), 2020, vol. 23, issue 03, 1-17
Abstract:
We show that for time-inhomogeneous Markovian Heath–Jarrow–Morton models driven by an infinite-dimensional Brownian motion and a Poisson random measure an equivalent change of measure exists whenever the real-world and the risk-neutral dynamics can be defined uniquely and are related via a drift and a jump condition.
Keywords: Heath–Jarrow–Morton framework; Lévy term structure models; real-world dynamics; risk-neutral dynamics; stochastic partial differential equations; change of measure (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S021902492050020X
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijtafx:v:23:y:2020:i:03:n:s021902492050020x
Ordering information: This journal article can be ordered from
DOI: 10.1142/S021902492050020X
Access Statistics for this article
International Journal of Theoretical and Applied Finance (IJTAF) is currently edited by L P Hughston
More articles in International Journal of Theoretical and Applied Finance (IJTAF) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().