COLLOCATING VOLATILITY: A COMPETITIVE ALTERNATIVE TO STOCHASTIC LOCAL VOLATILITY MODELS
Anthonie W. van der Stoep,
Lech Grzelak and
Cornelis Oosterlee
Additional contact information
Anthonie W. van der Stoep: CWI — National Research Institute for Mathematics and Computer Science, Amsterdam, The Netherlands†Pricing Model Validation, Rabobank, Utrecht, The Netherlands‡Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
International Journal of Theoretical and Applied Finance (IJTAF), 2020, vol. 23, issue 06, 1-42
Abstract:
We discuss a competitive alternative to stochastic local volatility models, namely the Collocating Volatility (CV) framework, introduced in [L. A. Grzelak (2019) The CLV framework — A fresh look at efficient pricing with smile, International Journal of Computer Mathematics 96 (11), 2209–2228]. The CV framework consists of two elements, a “kernel process” that can be efficiently evaluated and a local volatility function. The latter, based on stochastic collocation — e.g. [I. Babuška, F. Nobile & R. Tempone (2007) A stochastic collocation method for elliptic partial differential equations with random input Data, SIAM Journal on Numerical Analysis 45 (3), 1005–1034; B. Ganapathysubramanian & N. Zabaras (2007) Sparse grid collocation schemes for stochastic natural convection problems, Journal of Computational Physics 225 (1), 652–685; J. A. S. Witteveen & G. Iaccarino (2012) Simplex stochastic collocation with random sampling and extrapolation for nonhypercube probability spaces, SIAM Journal on Scientific Computing 34 (2), A814–A838; D. Xiu & J. S. Hesthaven (2005) High-order collocation methods for differential equations with random inputs, SIAM Journal on Scientific Computing 27 (3), 1118–1139] — connects the kernel process to the market and allows the CV framework to be perfectly calibrated to European-type options. In this paper, we consider three different kernel process choices: the Ornstein–Uhlenbeck (OU) and Cox–Ingersoll–Ross (CIR) processes and the Heston model. The kernel process controls the forward smile and allows for an accurate and efficient calibration to exotic options, while the perfect calibration to liquid market quotes is preserved. We confirm this by numerical experiments, in which we calibrate the OU-CV, CIR-CV and Heston-CV frameworks to FX barrier options.
Keywords: Collocating volatility; stochastic local volatility; Monte Carlo; stochastic collocation; calibration; forward volatility; barrier options (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219024920500387
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijtafx:v:23:y:2020:i:06:n:s0219024920500387
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219024920500387
Access Statistics for this article
International Journal of Theoretical and Applied Finance (IJTAF) is currently edited by L P Hughston
More articles in International Journal of Theoretical and Applied Finance (IJTAF) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().