EconPapers    
Economics at your fingertips  
 

Bug Severity Assessment in Cross Project Context and Identifying Training Candidates

V. B. Singh (), Sanjay Misra and Meera Sharma ()
Additional contact information
V. B. Singh: Delhi College of Arts & Commerce, University of Delhi, Delhi, India
Sanjay Misra: Covenant University, Ota, Nigeria3Department of Computer Engineering, Atilim University, Ankara, Turkey
Meera Sharma: Department of Computer Science, University of Delhi, Delhi, India

Journal of Information & Knowledge Management (JIKM), 2017, vol. 16, issue 01, 1-30

Abstract: The automatic bug severity prediction will be useful in prioritising the development efforts, allocating resources and bug fixer. It needs historical data on which classifiers can be trained. In the absence of such historical data cross project prediction provides a good solution. In this paper, our objective is to automate the bug severity prediction by using a bug metric summary and to identify best training candidates in cross project context. The text mining technique has been used to extract the summary terms and trained the classifiers using these terms. About 63 training candidates have been designed by combining seven datasets of Eclipse projects to develop the severity prediction models. To deal with the imbalance bug data problem, we employed two approaches of ensemble by using two operators available in RapidMiner: Vote and Bagging. Results show that k-Nearest Neighbour (k-NN) performance is better than the Support Vector Machine (SVM) performance. Naive Bayes f-measure performance is poor, i.e. below 34.25%. In case of k-NN, developing training candidates by combining more than one training datasets helps in improving the performances (f-measure and accuracy). The two ensemble approaches have improved the f-measure performance up to 5% and 10% respectively for the severity levels having less number of bug reports in comparison of major severity level. We have further motivated the paper with a cross project bug severity prediction between Eclipse and Mozilla products. Results show that Mozilla products can be used to build reliable prediction models for Eclipse products and vice versa in case of SVM and k-NN classifiers.

Keywords: Bug severity; cross project prediction; text mining; ensemble approach (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219649217500058
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:jikmxx:v:16:y:2017:i:01:n:s0219649217500058

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0219649217500058

Access Statistics for this article

Journal of Information & Knowledge Management (JIKM) is currently edited by Professor Suliman Hawamdeh

More articles in Journal of Information & Knowledge Management (JIKM) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:jikmxx:v:16:y:2017:i:01:n:s0219649217500058