Decision Tree-Based Analytics for Reducing Air Pollution
Ajanta Das () and
Anindita Desarkar ()
Additional contact information
Ajanta Das: Department of Computer Science and Engineering, University of Engineering and Management, Kolkata 700160, India
Anindita Desarkar: Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Kolkata Campus, Kolkata 700107, India
Journal of Information & Knowledge Management (JIKM), 2018, vol. 17, issue 02, 1-20
Abstract:
Air pollution indicates contaminated air which arises due to the effect of physical, biological or chemical alteration to the air in the atmosphere applicable both for indoors and outdoors. This situation arises when poisonous gases, dust or smoke enter into the atmosphere and make the surroundings vulnerable for any living beings as well as difficult for them to survive. Large numbers of premature deaths happen across the globe if exposed to these pollutants on a long-term basis as major portion of the cities have the pollution level above the threshold determined by World Health Organization (WHO). So appropriate measures need to be taken on a priority basis to reduce air pollution as well as save our planet. This paper proposes a novel air pollution reduction approach which collects source pollution data. After extraction of source data, it uses various databases (DBs) and then different decisions or classes are created. The decision tree was created with the help of Iterative Dichotomiser 3 (ID3) algorithm to implement the rule base appropriately depending on the air pollution level and a bunch of rule sets were derived from the decision tree further.
Keywords: Air pollution; rule base; decision tree; analytics and knowledge discovery (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219649218500156
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:jikmxx:v:17:y:2018:i:02:n:s0219649218500156
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219649218500156
Access Statistics for this article
Journal of Information & Knowledge Management (JIKM) is currently edited by Professor Suliman Hawamdeh
More articles in Journal of Information & Knowledge Management (JIKM) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().