Fuzzy Logic Depth Based Energy Aware Routing Protocol for Underwater Acoustic Sensor Network: FLDEAR
Sathish Kumar Natesan () and
Raja Kumar Krishnan ()
Additional contact information
Sathish Kumar Natesan: School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
Raja Kumar Krishnan: School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
Journal of Information & Knowledge Management (JIKM), 2021, vol. 20, issue supp01, 1-24
Abstract:
The Underwater Acoustic Sensor Network (UASN) plays a dynamic role in various application extents like surveillance, military, terrestrial networks and industrial application. In UASN, each Underwater Sensor Node (USN) is deployed in many places. The multiple paths are always used for transmitting data from USN to the Sink Node (SN). Each sensor constitutes a set of small devices and a small battery. If data is received from multiple nodes at the same time then, there is a chance for a collision and also it will bring down network lifetime. In recent years, only a few research works are done in fuzzy based routing in UASN. For increasing the network’s lifetime, there is always a need for an optimum routing path in UASN with improved parameters related to propagation delay, energy and throughput. The present paper proposes the Fuzzy Logic Depth based Energy-Aware Routing (FLDEAR) path in UASN. A static USN was utilized in the proposed system. Each USN is assigned a Priority Number (PN) by the SN. The PN is used for avoiding collision in the proposed model. The simulation is conducted employing Aqua-Sim (AS) which is based on Network Simulator-2(NS2). The simulation results illustrate that this system outperforms the existing routing protocol such as protocols of Energy Efficient Cooperative Opportunistic Routing (EECOR), Fuzzy Depth Based Routing (FDBR) and Depth Based Routing (DBR) in terms of improved parameters related to energy, propagation delay and throughput. Finally, the lifetime of UASN is improved by 70–80% by the implementation of the proposed FLDEAR protocol.
Keywords: Depth based routing; fuzzy logic; energy; fuzzy depth-based routing; underwater acoustic sensor network (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219649221400025
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:jikmxx:v:20:y:2021:i:supp01:n:s0219649221400025
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219649221400025
Access Statistics for this article
Journal of Information & Knowledge Management (JIKM) is currently edited by Professor Suliman Hawamdeh
More articles in Journal of Information & Knowledge Management (JIKM) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().