EconPapers    
Economics at your fingertips  
 

Handling Massive Sparse Data in Recommendation Systems

V. Lakshmi Chetana () and Hari Seetha
Additional contact information
V. Lakshmi Chetana: School of Computer Science and Engineering, VIT-AP University, Near Vijayawada, Andhra Pradesh, India
Hari Seetha: Center of Excellence, AI and Robotics, VIT-AP University, Near Vijayawada, Andhra Pradesh, India

Journal of Information & Knowledge Management (JIKM), 2024, vol. 23, issue 03, 1-37

Abstract: Collaborative filtering-based recommendation systems have become significant in various domains due to their ability to provide personalised recommendations. In e-commerce, these systems analyse the browsing history and purchase patterns of users to recommend items. In the entertainment industry, collaborative filtering helps platforms like Netflix and Spotify recommend movies, shows and songs based on users’ past preferences and ratings. This technology also finds significance in online education, where it assists in suggesting relevant courses and learning materials based on a user’s interests and previous learning behaviour. Even though much research has been done in this domain, the problems of sparsity and scalability in collaborative filtering still exist. Data sparsity refers to too few preferences of users on items, and hence it would be difficult to understand users’ preferences. Recommendation systems must keep users engaged with fast responses, and hence there is a challenge in handling large data as these days it is growing quickly. Sparsity affects the recommendation accuracy, while scalability influences the complexity of processing the recommendations. The motivation behind the paper is to design an efficient algorithm to address the sparsity and scalability problems, which in turn provide a better user experience and increased user satisfaction. This paper proposes two separate, novel approaches that deal with both problems. In the first approach, an improved autoencoder is used to address sparsity, and later, its outcome is processed in a parallel and distributed manner using a MapReduce-based k-means clustering algorithm with the Elbow method. Since the k-means clustering technique uses a predetermined number of clusters, it may not improve accuracy. So, the elbow method identifies the optimal number of clusters for the k-means algorithm. In the second approach, a MapReduce-based Gaussian Mixture Model (GMM) with Expectation-Maximization (EM) is proposed to handle large volumes of sparse data. Both the proposed algorithms are implemented using MovieLens 20M and Netflix movie recommendation datasets to generate movie recommendations and are compared with the other state-of-the-art approaches. For comparison, metrics like RMSE, MAE, precision, recall, and F-score are used. The outcomes demonstrate that the second proposed strategy outperformed state-of-the-art approaches.

Keywords: Auto-encoder; clustering; collaborative filtering; elbow method; expectation-maximization; Gaussian mixture model; Hadoop; MapReduce; sparsity; scalability; recommendation systems (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219649224500217
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:jikmxx:v:23:y:2024:i:03:n:s0219649224500217

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0219649224500217

Access Statistics for this article

Journal of Information & Knowledge Management (JIKM) is currently edited by Professor Suliman Hawamdeh

More articles in Journal of Information & Knowledge Management (JIKM) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:jikmxx:v:23:y:2024:i:03:n:s0219649224500217