Improved Association Rule Mining-based Data Sanitisation with Blockchain for Secured Supply Chain Management
Priti S. Lahane and
Shivaji R. Lahane
Additional contact information
Priti S. Lahane: Department of Information Technology, Mumbai Education Trust, Bhujbal Knowledge City, Institute of Engineering, Nashik, Maharashtra, India
Shivaji R. Lahane: Department of Computer Engineering, Gokhale Education Society R.H. Sapat College of Engineering, Management Studies & Research, Nashik 422005, Maharashtra, India
Journal of Information & Knowledge Management (JIKM), 2024, vol. 23, issue 04, 1-36
Abstract:
A supply chain management (SCM) method must include information sharing as a vital component in order to improve supply chain performance and boost an organisation’s strategic advantage. Since, due to a lack of trust concern over information leakage, and security breaches by nefarious individuals or groups, several organisations are hesitant to share information with their supply chain partners. This work presents a new supply chain management-based secure data transmission method. By using blockchain-based data storage, it is assumed that the manufacturers, suppliers, and customers would transfer data that must be kept private during transmission. As a consequence, this paper aims to provide an improved association rule mining with a data sanitisation scheme with an improved Apriori algorithm used in the proposed data sanitisation process. In particular, the Long Short-Term Memory (LSTM) will generate keys by considering the objective relying on the value of the preservation ratio, false rule generation, hiding failure, and degree of modification. The weights are adjusted via a novel Minkowski distance-based Namib beetle optimisation (MDNBO) technique, which also improves the performance of the LSTM model. The reverse process of encryption occurs when encrypted data are restored at the receiving end. By contrasting it with the old methods with regard to security as well, the proposed protected data in SCM with blockchain technology will be proved to be efficient.
Keywords: Supply chain management; blockchain technology; data sanitisation key generation; long short-term memory (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219649224500412
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:jikmxx:v:23:y:2024:i:04:n:s0219649224500412
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219649224500412
Access Statistics for this article
Journal of Information & Knowledge Management (JIKM) is currently edited by Professor Suliman Hawamdeh
More articles in Journal of Information & Knowledge Management (JIKM) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().