Heterogeneous Internet of Things Big Data Analysis System Based on Mobile Edge Computing
Lin Yang ()
Additional contact information
Lin Yang: College of Artificial Intelligence and Big Data, Zibo Vocational Institute, Zibo 255000, P. R. China
Journal of Information & Knowledge Management (JIKM), 2025, vol. 24, issue 03, 1-20
Abstract:
The big data heterogeneous Internet of Things (IoT) requires mobile edge computing (MEC) to process some data, and the data analysis system of MEC often has the problem of excessive terminal energy consumption (ECS) or long delay. So this study designed an energy-saving optimization algorithm for the task offloading processing module in the big data heterogeneous IoT analysis system, and designed and conducted simulation experiments to verify the application performance of the algorithm. The experimental results show that the #04 scheme of the designed algorithm has the lowest terminal ECS under the same conditions. Choosing the #04 scheme to build the algorithm, comparative analysis shows that when the edge server (ES) computing rate is 10 cycles/s, the weighted sum values of terminal ECS for EOPU, MPCO, exhaustive search, and local computing methods are 23.6 J, 23.9 J, 28.5 J and 84.5 J, respectively. Moreover, the algorithm possesses a significantly higher percentage of remaining time under different conditions of total SMD devices and total subchannels compared to other methods. This indicates that the designed algorithm can markedly enhance the processing performance of the task offloading model of the big data heterogeneous IoT data analysis system, and can also effectively reduce terminal ECS and system latency. The research results can provide reference for improving the processing ability of heterogeneous IoT big data analysis systems. The contribution of this study to the academic field lies in providing a model that can effectively reduce the operational ECS and time consumption of heterogeneous IoT big data analysis systems containing mobile animal networking devices. Moreover, from an industrial perspective, the results of this study contribute to improving the efficiency of information exchange and processing in the field of IoT computing, thereby promoting the promotion of IoT technology.
Keywords: Mobile edge computing; heterogeneous internet of things; big data analysis; subchannel; terminal (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219649224500473
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:jikmxx:v:24:y:2025:i:03:n:s0219649224500473
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219649224500473
Access Statistics for this article
Journal of Information & Knowledge Management (JIKM) is currently edited by Professor Suliman Hawamdeh
More articles in Journal of Information & Knowledge Management (JIKM) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().