ARROW-TYPE RESULTS UNDER INTUITIONISTIC FUZZY PREFERENCES
Gilbert Njanpong Nana and
Louis Aime Fono ()
Additional contact information
Gilbert Njanpong Nana: Laboratoire de Mathématiques Appliquées, Ecole Nationale Supèrieure Polytechnique, B.P. 8390 Yaoundé, Cameroun
Louis Aime Fono: Département de Mathématiques et Informatique, Faculté des Sciences, Université de Douala, B.P. 24157 Douala, Cameroun
New Mathematics and Natural Computation (NMNC), 2013, vol. 09, issue 01, 97-123
Abstract:
Fonoet al.11characterized, for an intuitionistic fuzzyt-norm$\mathcal{T} = (T, S)$, two properties of a given regular intuitionistic fuzzy strict component of a(T,S)-transitive intuitionistic fuzzy preference. In this paper, we examine these characterizations in the particular case where$\mathcal{T} = (\min,\max)$. We then use these (general and particular) results to obtain some intuitionistic fuzzy versions of Arrow's impossibility theorem. Therefore, by weakening a requirement to social preferences, we deduce a positive result, that is, we display an example of a non-dictatorial Intuitionistic Fuzzy Agregation Rule (IFAR) and, we establish an intuitionistic fuzzy version of Gibbard's oligarchy theorem.
Keywords: Intuitionistic fuzzy preference; regular intuitionistic fuzzy strict preference; (T; S)-transitivity; Arrow impossibility theorem; Gibbard oligarchy theorem (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S1793005713500075
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:nmncxx:v:09:y:2013:i:01:n:s1793005713500075
Ordering information: This journal article can be ordered from
DOI: 10.1142/S1793005713500075
Access Statistics for this article
New Mathematics and Natural Computation (NMNC) is currently edited by Paul P Wang
More articles in New Mathematics and Natural Computation (NMNC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().