Evolution of Region Connection Calculus to VRCC-3D+
Chaman L. Sabharwal () and
Jennifer L. Leopold ()
Additional contact information
Chaman L. Sabharwal: Computer Science Department, Missouri University of S&T, Rolla, MO 65409, USA
Jennifer L. Leopold: Computer Science Department, Missouri University of S&T, Rolla, MO 65409, USA
New Mathematics and Natural Computation (NMNC), 2014, vol. 10, issue 02, 103-141
Abstract:
Qualitative spatial reasoning (QSR) is useful for deriving logical inferences when quantitative spatial information is not available. QSR theories have applications in areas such as geographic information systems, spatial databases, robotics, and cognitive sciences. The existing QSR theories have been applied primarily to 2D. The ability to perform QSR over a collection of 3D objects is desirable in many problem domains. Here we present the evolution (VRCC-3D+) of RCC-based QSR from 2D to both 3D (including occlusion support) and 4D (a temporal component). It is time consuming to construct large composition tables manually. We give a divide-and-conquer algorithm to construct a comprehensive composition table from smaller constituent tables (which can be easily handcrafted). In addition to the logical consistency entailment checking that is required for such a system, clearly there is a need for a spatio-temporal component to account for spatial movements and path consistency (i.e. to consider only smooth transitions in spatial movements over time). Visually, these smooth movement phenomena are represented as a conceptual neighborhood graph. We believe that the methods presented herein to detect consistency, refine uncertainty, and enhance reasoning about 3D objects will provide useful guidelines for other studies in automated spatial reasoning.
Keywords: Qualitative spatial reasoning; region connection calculus; composition; smooth transition; constraint logic programming (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S1793005714500069
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:nmncxx:v:10:y:2014:i:02:n:s1793005714500069
Ordering information: This journal article can be ordered from
DOI: 10.1142/S1793005714500069
Access Statistics for this article
New Mathematics and Natural Computation (NMNC) is currently edited by Paul P Wang
More articles in New Mathematics and Natural Computation (NMNC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().