ELECTRONIC STRUCTURE OF STRAINED VANADIUM OVERLAYERS ON W(100) AND Ta(100)
R. de Coss ()
Additional contact information
R. de Coss: Applied Physics Department, CINVESTAV-IPN, Apartado Postal 73 Cordemex 97310 Mérida, Yucatán, Mexico
Surface Review and Letters (SRL), 1996, vol. 03, issue 04, 1505-1509
Abstract:
We study the role of hybridization and overlayer–substrate lattice mismatch in determining the surface electronic structure of strained V monolayers and bilayers on W(100) and Ta(100). The local density of states is calculated in the tight-binding approximation within the surface-Green-function-matching formalism. For one monolayer of V on W(100) and Ta(100), the strong monolayer–substrate3d–5dhybridization determines the features of the surface local density of states, with essentially no differences between 1V/W(100) and 1V/Ta(100). For the bilayer we find that the electronic structure of the topmost layer depends strongly on the lattice mismatch between overlayer and substrate. In particular, we find that the surface local density of states at the Fermi level in 2V/Ta(100) is 69% higher than in 1V/Ta(100); the lattice mismatch between bulk constants of V and Ta is 9.0%. These results indicate that strain induces strong band narrowing in vanadium overlayers on transition metals, despite the large overlayer–substrate hybridization, but depends critically on the film thickness.
Date: 1996
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218625X96002503
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:srlxxx:v:03:y:1996:i:04:n:s0218625x96002503
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218625X96002503
Access Statistics for this article
Surface Review and Letters (SRL) is currently edited by S Y Tong
More articles in Surface Review and Letters (SRL) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().