POROUS SILICON: INFLUENCE OF ETCHING TEMPERATURE ON MICROSTRUCTURE AND LUMINESCENCE
D. J. Blackwood and
Y. Zhang
Additional contact information
D. J. Blackwood: Department of Materials Science, National University of Singapore, Blk S1A Lower Kent Ridge Road, Singapore 119260, Singapore
Y. Zhang: Department of Materials Science, National University of Singapore, Blk S1A Lower Kent Ridge Road, Singapore 119260, Singapore
Surface Review and Letters (SRL), 2001, vol. 08, issue 05, 429-433
Abstract:
Electrochemical etching in solutions based on hydrofluoric acid has been widely used to form light-emitting porous silicon. However, the effects of a number of the experimental parameters on the quality of the porous silicon produced have yet to be fully investigated. In the present paper the influence of temperature and viscosity of the etching solution is evaluated in terms of the morphology and porosity of the porous silicon produced as well as the wavelength of the photoluminescence or electroluminescence subsequently emitted. It was found that under stimulation from a UV light source the wavelength of the photoluminescence emitted from the porous silicon films blueshifted with decreasing etching temperature. SEM and AFM investigations revealed that this blueshifting of the photoluminescence resulted from the production of smaller nanocrystals at the lower etching temperatures.
Date: 2001
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218625X0100118X
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:srlxxx:v:08:y:2001:i:05:n:s0218625x0100118x
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218625X0100118X
Access Statistics for this article
Surface Review and Letters (SRL) is currently edited by S Y Tong
More articles in Surface Review and Letters (SRL) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().