EconPapers    
Economics at your fingertips  
 

STUDY OF CHEMICAL BATH DEPOSITION OFZnSTHIN FILMS WITH SUBSTRATE VIBRATION

Z. Q. Bian, X. B. Xu, J. B. Chu, Z. Sun, Y. W. Chen and S. M. Huang ()
Additional contact information
Z. Q. Bian: Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062, P. R. China
X. B. Xu: Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062, P. R. China
J. B. Chu: Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062, P. R. China
Z. Sun: Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062, P. R. China
Y. W. Chen: Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062, P. R. China
S. M. Huang: Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062, P. R. China

Surface Review and Letters (SRL), 2008, vol. 15, issue 06, 821-827

Abstract: An improved chemical bath deposition (CBD) technique has been provided to prepare zinc sulfide(ZnS)thin films on glass substrates deposited at 80–82°C using a mixed aqueous solution of zinc sulfate, ammonium sulfate, thiourea, hydrazine hydrate, and ammonia at the alkaline conditions. Both the traditional magnetic agitation and the substrates vibration by hand frequently were done simultaneously during the deposition. The substrates vibration reduced the formation and residence of gas bubbles on the glass substrates during growth and resulted in growth of cleanZnSthin films with high quality. Ammonia and hydrazine hydrate were used as complexing agents. It is found that hydrazine hydrate played an important role in growth ofZnSfilms. The structure and microstructure ofZnSfilms were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-vis spectroscopic methods. The XRD showed a hexagonal structure. The formed ZnS films exhibited good optical properties with high transmittance in the visible region and the band gap value was estimated to be 3.5–3.70 eV.

Keywords: ZnS; chemical bath deposition; thin films (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218625X08012098
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:srlxxx:v:15:y:2008:i:06:n:s0218625x08012098

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0218625X08012098

Access Statistics for this article

Surface Review and Letters (SRL) is currently edited by S Y Tong

More articles in Surface Review and Letters (SRL) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:srlxxx:v:15:y:2008:i:06:n:s0218625x08012098