CRITICAL SURFACE TENSION, CRITICAL SURFACE ENERGY AND PARACHOR OF MnSO3 THIN FILM
İ. A. Kariper ()
Additional contact information
İ. A. Kariper: Faculty of Education, Erciyes University, 38039 Kayseri, Turkey
Surface Review and Letters (SRL), 2016, vol. 23, issue 03, 1-8
Abstract:
This study examines the critical surface energy of manganese sulfite (MnSO3) crystalline thin film, produced via chemical bath deposition (CBD) on substrates. In addition, parachor, which is an important parameter of chemical physics, and its relationship with grain size, film thickness, etc., has been investigated for thin films. For this purpose, MnSO3 thin films were deposited at room temperature using different deposition times. Structural properties of the films, such as film thickness and average grain size, were examined using X-ray diffraction; film thickness and surface properties were measured by and atomic force microscope; and critical surface tension of MnSO3 thin films was measured with Optical Tensiometer and calculated using Zisman method. The results showed that critical surface tension and parachor of the films have varied with average grain size and film thickness. Critical surface tension was calculated as 32.97, 24.55, 21.03 and 12.76mN/m for 14.66, 30.84, 37.07 and 44.56nm grain sizes, respectively. Film thickness and average grain size have been increased with the deposition time and they were found to be negatively correlated with surface tension and parachor. The relationship between film thickness and parachor was found as P=−0.1856t+183.45; whereas the relationship between average grain size and parachor was found as P=−0.8911D+150.52. We also showed the relationships between parachor and some thin films parameters.
Keywords: Thin films; parachor; surface energy; surface tension (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218625X16500098
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:srlxxx:v:23:y:2016:i:03:n:s0218625x16500098
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218625X16500098
Access Statistics for this article
Surface Review and Letters (SRL) is currently edited by S Y Tong
More articles in Surface Review and Letters (SRL) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().