ELECTROCATALYSIS OF THE NEEDLE-LIKE NiMoO4 CRYSTAL TOWARD UREA OXIDATION COUPLED WITH H2 PRODUCTION
Mao Zhou and
Yuqing Miao
Additional contact information
Mao Zhou: University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
Yuqing Miao: University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
Surface Review and Letters (SRL), 2018, vol. 25, issue 02, 1-8
Abstract:
In the International Space Station, urine is considered something to be treated. However, urine is mainly composed of water and urea, while they have been demonstrated as an excellent hydrogen carrier for sustainable energy supply. Through the simple chemical coprecipitation and hydrothermal reaction, the needle-like NiMoO4 crystals were synthesized with the average width around 500nm and length up to 4μm. The resulted products were thoroughly characterized by scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, Fourier-transform infrared spectroscopy and ultraviolet–visible spectrum. The needle-like NiMoO4 crystals exhibited excellent electrocatalytic oxidation toward urea at anode in alkali solution, leading to the increased performance of hydrogen evolution reaction at cathode with the lower electrochemical potential and energy consumption required to drive the reaction. The high electrocatalysis of the needle-like NiMoO4 crystals toward urea oxidation reveals their great potential for future application to clean the urine/urea-rich wastewater and to produce hydrogen in space station and environmental wastewater.
Keywords: NiMoO4; needle-like; urea; hydrogen production (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218625X18500610
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:srlxxx:v:25:y:2018:i:02:n:s0218625x18500610
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218625X18500610
Access Statistics for this article
Surface Review and Letters (SRL) is currently edited by S Y Tong
More articles in Surface Review and Letters (SRL) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().