EconPapers    
Economics at your fingertips  
 

PHOTONIC BAND GAPS PROPERTIES OF TWO-DIMENSIONAL TERNARY SUPERCONDUCTOR PHOTONIC CRYSTALS

Hussein A. Elsayed ()
Additional contact information
Hussein A. Elsayed: Department of Physics, Faculty of Sciences, Beni-Suef University, Egypt

Surface Review and Letters (SRL), 2019, vol. 26, issue 03, 1-12

Abstract: In the present communication, by means of the frequency-dependent plane wave expansion method, we theoretically demonstrate the photonic band structures of a new type of two-dimensional (2D) annular photonic crystals (PCs) called 2D ternary superconductor PCs created by square and triangular lattices. Our idea is based on the appearance of the interfacial layer through a number of experimental works. We mainly investigate the maximization of the photonic band gap (PBG) using two types of ternary superconductor PCs. Type I in which an interfacial layer of Nb low temperature superconductor (LTSC) is encircled by cylindrical rods and a background material of two different dielectric materials. Type II is composed of cylindrical rods of Nb enclosed with an interfacial layer and a background material of the same dielectric materials used in type I. With the calculated photonic band structures, it can be found that the PBG can be significantly enlarged using the ternary structures more than the conventional (binary) structures. In addition, the different distributions of the constituent materials of the ternary structures have a distinct effect on the width of the PBGs.

Keywords: Superconductor materials; 2D photonic crystals; ternary structures; annular photonic crystals (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218625X18501524
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:srlxxx:v:26:y:2019:i:03:n:s0218625x18501524

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0218625X18501524

Access Statistics for this article

Surface Review and Letters (SRL) is currently edited by S Y Tong

More articles in Surface Review and Letters (SRL) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:srlxxx:v:26:y:2019:i:03:n:s0218625x18501524