BEHAVIOR OF APSED TBCS SUBJECTED TO COOLING MEDIA IN THERMAL CYCLE SYSTEMS
Vijay Kumar Dwivedi and
Dipak Kumar
Additional contact information
Vijay Kumar Dwivedi: Mechanical Engineering Department, GLA University, Mathura, UP India
Dipak Kumar: ��Mechanical Engineering Department, RKGIT Ghaziabad 201003, UP India
Surface Review and Letters (SRL), 2021, vol. 28, issue 11, 1-10
Abstract:
In this study, first, yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) with CoNiCrAlY bond coats both were fabricated on IN718 superalloy substrate, using air plasma spraying (APS) techniques. In order to understand the actual microstructural morphological behavior, phase stability, and thermal cycling behaviors of 8YSZ TBCs were characterized by field emission spectroscopy equipped scanning electron microscopy (FESEM), differential scanning calorimetry (DSC) and thermal cycling test. DSC results confirmed the basic reason of selecting the high cycling temperature. The crack initiation and propagation under thermal stresses due to temperature differences from maximum temperature of 1100∘C to cooling medium; here, air cooling and water quenching are used. Arising from either edges or corners it was observed serious problem which is restraining thermal cycling lifetime of TBCs, indicating failure mechanism is independent from operating parameters of thermal cycling test. However, in comparison to water-cooled thermal fatigue life, air-cooled thermal fatigue lifetime was 2.36 times better.
Keywords: Inconel 718; top coat; cooling media effect; thermal cyclic life behavior (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218625X21501031
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:srlxxx:v:28:y:2021:i:11:n:s0218625x21501031
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218625X21501031
Access Statistics for this article
Surface Review and Letters (SRL) is currently edited by S Y Tong
More articles in Surface Review and Letters (SRL) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().