INVESTIGATION OF THERMO-MECHANICAL BEHAVIOR IN BRAKE DISC–PAD COUPLE USING THE FINITE ELEMENT METHOD
Cansu Ay and
Abdullah Demä°r ()
Additional contact information
Cansu Ay: Karadeniz Technical University, Department of Mechanical Engineering, Trabzon, Turkey
Abdullah Demä°r: Marmara University, Department of Mechanical Engineering, Istanbul, Turkey
Surface Review and Letters (SRL), 2022, vol. 29, issue 09, 1-15
Abstract:
The braking system is the most significant active safety system that converts the vehicle’s mechanical energy into heat energy based on the braking pair’s friction. In this paper, temperature-friction coefficient variation, disc thickness variation, and coning are investigated with the Fade I test procedure is performed according to the SAE J2522 comprehensive brake efficiency test standard. In these investigations, the combined or discrete effects of the peripheral speed factor, the temperature increase with the braking time, thermal expansion and increased friction coefficient values have been decisive on the increase in the disc thickness variation from the inner part to the outer part. The thermo-mechanical behavior of the disc for the same test procedure is demonstrated in ANSYS® software using the finite element method. Steady-state thermal analysis method is chosen, and then total deformation and von Mises stress conditions are evaluated by using transient structural analysis with thermal analysis results and experimental data. At the end of braking, the deformation has reached its 0.28872 mm (maximum) at the outer radius where the pad and disc are in contact, and the maximum von Mises stress value (964.33 MPa) has been obtained. Furthermore, the deformations reached the maximum in the region where the disc temperature reached its maximum during braking revealing that the obtained results are interrelated.
Keywords: Brake disc; fade; disc thickness variation; total deformation; von Mises stress (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218625X22501177
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:srlxxx:v:29:y:2022:i:09:n:s0218625x22501177
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218625X22501177
Access Statistics for this article
Surface Review and Letters (SRL) is currently edited by S Y Tong
More articles in Surface Review and Letters (SRL) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().