SYNTHESIS OF NITROGEN-CONTAINING CARBON BY SOLUTION PLASMA PROCESS AT VARIOUS PULSE REPETITION RATES
Koangyong Hyun ()
Additional contact information
Koangyong Hyun: Division of Naval Officer Science, Mokpo National Maritime University, Mokpo, Jeonnam 58628, Korea
Surface Review and Letters (SRL), 2023, vol. 30, issue 08, 1-7
Abstract:
The solution plasma process (SPP) has attracted considerable attention for the synthesis of carbon nanomaterials; the SPP uses electrical discharges generated directly by a bipolar pulsed power supply for various combinations of the solvents and solutes in the solution. However, the SPP requires high-temperature heat treatment for enhancing conductivity and exhibiting catalyst activity. Furthermore, the metal used as the electrode in the SPP is generally sputtered during discharge. This study presents the feasibility of reducing the heat-treatment step and solving the problem of sputtering of the metal electrodes by simply increasing the repetition frequency of the bipolar pulsed power. During synthesis, the pulse frequency acts as the graphitization catalyst. The enhancement of crystallinity was further confirmed by X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The findings of this study are expected to contribute toward research on improving the properties of carbon for various applications of the SPP synthesis methods.
Keywords: Solution plasma process; carbon; energy materials; graphitization catalyst; pulse repetition rates (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218625X2350052X
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:srlxxx:v:30:y:2023:i:08:n:s0218625x2350052x
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218625X2350052X
Access Statistics for this article
Surface Review and Letters (SRL) is currently edited by S Y Tong
More articles in Surface Review and Letters (SRL) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().