Can Lognormal, Weibull or Gamma Distributions Improve the EWS-GARCH Value-at-Risk Forecasts?
Marcin Chlebus ()
Chapter 4 in Statistical Review, vol. 63, 2016, 3, 2016, vol. 63, pp 329-350 from University of Lodz
Abstract:
In the study, two-step EWS-GARCH models to forecast Value-at-Risk are analysed. The following models were considered: the EWS-GARCH models with lognormal, Weibull or Gamma distributions as a distributions in a state of turbulence, and with GARCH(1,1) or GARCH(1,1) with the amendment to empirical distribution of random error models as models used in a state of tranquillity. The evaluation of the quality of the Value-at-Risk forecasts was based on the Value-at-Risk forecasts adequacy (the excess ratio, the Kupiec test, the Christoffersen test, the asymptotic test of unconditional coverage and the backtesting criteria defined by the Basel Committee) and the analysis of loss functions (the Lopez quadratic loss function, the Abad & Benito absolute loss function, the 3rd version of Caporin loss function and the function of excessive costs). Obtained results show that the EWSGARCH models with lognormal, Weibull or Gamma distributions may compete with EWS-GARCH models with exponential and empirical distributions. The EWS-GARCH model with lognormal, Weibull or Gamma distributions are relatively less conservative, but using them is less expensive than using the other EWS-GARCH models.
Keywords: Value-at-Risk; GARCH models; Regime switching; Forecasting; Market risk (search for similar items in EconPapers)
JEL-codes: C01 E02 F00 G00 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://ps.stat.gov.pl/Article/2016/3/329-350 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ann:findec:book:y:2016:n:63:ch:04:ps
Access Statistics for this chapter
More chapters in FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making from University of Lodz Contact information at EDIRC.
Bibliographic data for series maintained by Piotr Wdowiński ().