An Information Theoretic Approach to Econometrics
George G. Judge and
Ron C. Mittelhammer
in Cambridge Books from Cambridge University Press
Abstract:
This book is intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic econometric models and methods. Because most data are observational, practitioners work with indirect noisy observations and ill-posed econometric models in the form of stochastic inverse problems. Consequently, traditional econometric methods in many cases are not applicable for answering many of the quantitative questions that analysts wish to ask. After initial chapters deal with parametric and semiparametric linear probability models, the focus turns to solving nonparametric stochastic inverse problems. In succeeding chapters, a family of power divergence measure-likelihood functions are introduced for a range of traditional and nontraditional econometric-model problems. Finally, within either an empirical maximum likelihood or loss context, Ron C. Mittelhammer and George G. Judge suggest a basis for choosing a member of the divergence family.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (22)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:cbooks:9780521689731
Ordering information: This item can be ordered from
http://www.cambridge ... p?isbn=9780521689731
Access Statistics for this book
More books in Cambridge Books from Cambridge University Press
Bibliographic data for series maintained by Data Services ().