Model Selection and Model Averaging
Gerda Claeskens and
Nils Lid Hjort
in Cambridge Books from Cambridge University Press
Abstract:
Given a data set, you can fit thousands of models at the push of a button, but how do you choose the best? With so many candidate models, overfitting is a real danger. Is the monkey who typed Hamlet actually a good writer? Choosing a model is central to all statistical work with data. We have seen rapid advances in model fitting and in the theoretical understanding of model selection, yet this book is the first to synthesize research and practice from this active field. Model choice criteria are explained, discussed and compared, including the AIC, BIC, DIC and FIC. The uncertainties involved with model selection are tackled, with discussions of frequentist and Bayesian methods; model averaging schemes are presented. Real-data examples are complemented by derivations providing deeper insight into the methodology, and instructive exercises build familiarity with the methods. The companion website features Data sets and R code.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (282)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:cbooks:9780521852258
Ordering information: This item can be ordered from
http://www.cambridge ... p?isbn=9780521852258
Access Statistics for this book
More books in Cambridge Books from Cambridge University Press
Bibliographic data for series maintained by Data Services ().