Semi-Parametric Modelling of Correlation Dynamics
Christian M. Hafner,
Dick van Dijk and
Philip Hans Franses
A chapter in Econometric Analysis of Financial and Economic Time Series, 2006, pp 59-103 from Emerald Group Publishing Limited
Abstract:
In this paper we develop a new semi-parametric model for conditional correlations, which combines parametric univariate Generalized Auto Regressive Conditional Heteroskedasticity specifications for the individual conditional volatilities with nonparametric kernel regression for the conditional correlations. This approach not only avoids the proliferation of parameters as the number of assets becomes large, which typically happens in conventional multivariate conditional volatility models, but also the rigid structure imposed by more parsimonious models, such as the dynamic conditional correlation model. An empirical application to the 30 Dow Jones stocks demonstrates that the model is able to capture interesting asymmetries in correlations and that it is competitive with standard parametric models in terms of constructing minimum variance portfolios and minimum tracking error portfolios.
Date: 2006
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.101 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.101 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
Working Paper: Semi-Parametric Modelling of Correlation Dynamics (2005) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:aecozz:s0731-9053(05)20003-8
DOI: 10.1016/S0731-9053(05)20003-8
Access Statistics for this chapter
More chapters in Advances in Econometrics from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().