EconPapers    
Economics at your fingertips  
 

Fitting and comparison of models for multivariate ordinal outcomes

Ivan Jeliazkov, Jennifer Graves and Mark Kutzbach

A chapter in Bayesian Econometrics, 2008, pp 115-156 from Emerald Group Publishing Limited

Abstract: In this paper, we consider the analysis of models for univariate and multivariate ordinal outcomes in the context of the latent variable inferential framework of Albert and Chib (1993). We review several alternative modeling and identification schemes and evaluate how each aids or hampers estimation by Markov chain Monte Carlo simulation methods. For each identification scheme we also discuss the question of model comparison by marginal likelihoods and Bayes factors. In addition, we develop a simulation-based framework for analyzing covariate effects that can provide interpretability of the results despite the nonlinearities in the model and the different identification restrictions that can be implemented. The methods are employed to analyze problems in labor economics (educational attainment), political economy (voter opinions), and health economics (consumers’ reliance on alternative sources of medical information).

Date: 2008
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.101 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.101 ... 0731-9053(08)23004-5
https://www.emerald.com/insight/content/doi/10.101 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eme:aecozz:s0731-9053(08)23004-5

DOI: 10.1016/S0731-9053(08)23004-5

Access Statistics for this chapter

More chapters in Advances in Econometrics from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().

 
Page updated 2025-03-30
Handle: RePEc:eme:aecozz:s0731-9053(08)23004-5