Testing utility maximization with measurement errors in the data
Barry Jones and
David Edgerton
A chapter in Measurement Error: Consequences, Applications and Solutions, 2009, pp 199-236 from Emerald Group Publishing Limited
Abstract:
Revealed preference axioms provide a simple way of testing data from consumers or firms for consistency with optimizing behavior. The resulting non-parametric tests are very attractive, since they do not require any ad hoc functional form assumptions. A weakness of such tests, however, is that they are non-stochastic. In this paper, we provide a detailed analysis of two non-parametric approaches that can be used to derive statistical tests for utility maximization, which account for random measurement errors in the observed data. These same approaches can also be used to derive tests for separability of the utility function.
Date: 2009
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
https://www.emerald.com/insight/content/doi/10.110 ... 9053(2009)0000024012
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:aecozz:s0731-9053(2009)0000024012
DOI: 10.1108/S0731-9053(2009)0000024012
Access Statistics for this chapter
More chapters in Advances in Econometrics from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().