The panel probit model: Adaptive integration on sparse grids
Florian Heiss
A chapter in Maximum Simulated Likelihood Methods and Applications, 2010, pp 41-64 from Emerald Group Publishing Limited
Abstract:
In empirical research, panel (and multinomial) probit models are leading examples for the use of maximum simulated likelihood estimators. The Geweke–Hajivassiliou–Keane (GHK) simulator is the most widely used technique for this type of problem. This chapter suggests an algorithm that is based on GHK but uses an adaptive version of sparse-grids integration (SGI) instead of simulation. It is adaptive in the sense that it uses an automated change-of-variables to make the integration problem numerically better behaved along the lines of efficient importance sampling (EIS) and adaptive univariate quadrature. The resulting integral is approximated using SGI that generalizes Gaussian quadrature in a way such that the computational costs do not grow exponentially with the number of dimensions. Monte Carlo experiments show an impressive performance compared to the original GHK algorithm, especially in difficult cases such as models with high intertemporal correlations.
Date: 2010
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
https://www.emerald.com/insight/content/doi/10.110 ... 9053(2010)0000026006
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:aecozz:s0731-9053(2010)0000026006
DOI: 10.1108/S0731-9053(2010)0000026006
Access Statistics for this chapter
More chapters in Advances in Econometrics from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().