EconPapers    
Economics at your fingertips  
 

Pretest Estimation in the Random Parameters Logit Model

Tong Zeng and Carter Hill

A chapter in Maximum Simulated Likelihood Methods and Applications, 2010, pp 107-136 from Emerald Group Publishing Limited

Abstract: In this paper we use Monte Carlo sampling experiments to examine the properties of pretest estimators in the random parameters logit (RPL) model. The pretests are for the presence of random parameters. We study the Lagrange multiplier (LM), likelihood ratio (LR), and Wald tests, using conditional logit as the restricted model. The LM test is the fastest test to implement among these three test procedures since it only uses restricted, conditional logit, estimates. However, the LM-based pretest estimator has poor risk properties. The ratio of LM-based pretest estimator root mean squared error (RMSE) to the random parameters logit model estimator RMSE diverges from one with increases in the standard deviation of the parameter distribution. The LR and Wald tests exhibit properties of consistent tests, with the power approaching one as the specification error increases, so that the pretest estimator is consistent. We explore the power of these three tests for the random parameters by calculating the empirical percentile values, size, and rejection rates of the test statistics. We find the power of LR and Wald tests decreases with increases in the mean of the coefficient distribution. The LM test has the weakest power for presence of the random coefficient in the RPL model.

Date: 2010
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
https://www.emerald.com/insight/content/doi/10.110 ... 9053(2010)0000026008
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eme:aecozz:s0731-9053(2010)0000026008

DOI: 10.1108/S0731-9053(2010)0000026008

Access Statistics for this chapter

More chapters in Advances in Econometrics from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().

 
Page updated 2025-03-30
Handle: RePEc:eme:aecozz:s0731-9053(2010)0000026008